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%e objective of this work is to propose ten efficient scaling techniques for the Wisconsin Diagnosis Breast Cancer (WDBC)
dataset using the support vector machine (SVM). %ese scaling techniques are efficient for the linear programming approach.
SVM with proposed scaling techniques was applied on the WDBC dataset. %e scaling techniques are, namely, arithmetic mean,
de Buchet for three cases (p � 1, 2, and∞), equilibration, geometric mean, IBM MPSX, and Lp-norm for three cases
(p � 1, 2, and∞). %e experimental results show that the equilibration scaling technique overcomes the benchmark normal-
ization scaling technique used in many commercial solvers. Finally, the experimental results also show the effectiveness of the grid
search technique which gets the optimal parameters (C and gamma) for the SVM classifier.

1. Introduction

Scaling techniques play an important role in the convergence
speed of machine learning algorithms, specially in classifi-
cation and regression tasks. Using an efficient scaling
technique makes training of algorithms faster. %ere is an
integrative relationship between the linear programming
approach and metaheuristic approach according to scaling
techniques. A scaling technique is defined as a mathematical
formula which makes these elements have similar magni-
tudes. In linear programming, the scaling techniques are
applied on the objective function, the coefficient matrix of
the inequalities, and the coefficient of constants. On the
contrary, in the metaheuristic approach, the scaling tech-
niques are applied on the matrix in which its rows represent
the observations and its columns are the attributes of the
dataset.

A dataset contains mostly nonzero elements which are of
different values. Such representation is called a bad repre-
sentation for this matrix. Scaling techniques can be used to
handle this issue. Scaling techniques are used before

applying the classifier in order to improve the classification
accuracy on the dataset.

%e comparison among the following scaling techniques,
Curtis and Reid [1] scaling technique, arithmetic mean
scaling technique, Wolfe [2] scaling technique, geometric
mean scaling technique, and equilibration scaling technique,
was proposed by Tomlin [3] on 6 test linear programming
problems of different sizes. Another study was proposed by
Larsson [4] by proposing and comparing entropy, de Buchet
scaling technique [5], and Lp-norm scaling technique [6] on
one-hundred thirty-five randomly generated problems of
different dimensions. He deduced that the entropy scaling
method outperforms the other scaling techniques. Elble and
Sahinidis [7] proposed new experimental results from the
comparison among the following scaling techniques: IBM
MPSX, entropy, arithmetic mean, binormalization, geo-
metric mean, Lp-norm, equilibration, and de Buchet on
benchmark problems from Netlib. Scaling and solution
times, the number of iterations for the solution, and the
maximum condition number were the evaluationmetrics for
their study. %ey deduced that the equilibration method
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outperformed other techniques. Ploskas and Samaras [8]
introduced experimental results for three algorithms:
MATLAB’s revised simplex method, exterior point simplex
method, and interior point algorithm using geometric mean
scaling technique, equilibration scaling technique, and
arithmetic mean scaling technique. %ey deduced that the
equilibration scaling technique overcame the other tech-
niques and that the effectiveness of scaling is important to
both the interior point algorithm and revised simplex
method; on the contrary, the exterior point simplex method
is scaling invariant [9]. Ploskas and Samaras [10] proposed
new experimental results comparing arithmetic mean, de
Buchet for three cases (p � 1, 2, and∞), equilibration,
geometric mean, IBM MPSX, and Lp-norm for three cases
(p � 1, 2, and∞). Ploskas and Samaras [10] deduced that
arithmetic mean, equilibration, and geometric mean over-
came the other scaling techniques according to the execution
time. In [11], Ploskas and Samaras in the chapter “Scaling
Techniques” present a complete list of the scaling techniques
plus illustrative examples. Ploskas and Samaras [12] state
clearly that MATLAB’s GPU environment (in 2014) did not
offer sparse utilities. Also, they were the first to present a
GPU-based simplex implementation that showed speedups
in benchmark instances. In their implementation, they used
the most efficient scaling techniques.

In this work, ten efficient scaling techniques were pro-
posed for the Wisconsin Diagnosis Breast Cancer (WDBC)
dataset using the support vector machine (SVM). %e SVM
with proposed scaling techniques was applied on the WDBC
dataset. %e experimental results show that the equilibration
scaling technique overcomes the benchmark normalization
scaling technique.

%e rest of this paper is organized as follows.%e support
vector machine classifier is described in section 2. In section
3, detailed descriptions of new scaling techniques are pre-
sented. %e experimental design which has data description,
experimental setup, measure for performance evaluation,
and grid search method is introduced in section 4. In section
5, experimental results and discussions are discussed. In
section 6, conclusions and future works are introduced.

2. Support Vector Machine Classifier

%e support vector machine (SVM) is considered as a
machine learning model originally developed by Vapnik
[13, 14]. %e SVM is based on the Vapnik–Chervonenkis
(VC) theory and structural risk minimization (SRM)
principle [13, 15].%emain objective of the SVM is finding a
hyperplane in an N-dimensional space (N: the number of
features) that distinctly classifies the data points, as shown in
Figure 1. %e convex quadratic programming is used for the
SVM in order to avoid the local minima [13, 16].

In the linear classification, the hyperplane is placed in the
largest distance between two vectors. In case of the nonlinear
classification, it is mapped to the linear classification
problem in a high-dimensional space [17], as shown in
Figure 2.

Let us consider a binary classification task: suppose that
(x1, y1), . . . , (xn, yn): xi ∈ Rd and yi ∈ (−1, 1) is a labeled

training dataset such that xi is a representation of the feature
vector and yi is the class label (negative or positive) of a
training compound i. %e optimal hyperplane can then be
defined as follows:

wx
T

+ b � 0. (1)

Such that w is the weight vector, x is the input feature
vector, and b is the bias. w and b would satisfy both in-
equality (2) and inequality (3) for all elements of the training
set:

wx
T
i + b≥ 1, if yi � 1, (2)

wx
T
i + b≤ 1, if yi � −1. (3)

%e aim of training an SVM classifier is to determine w

and b so that the hyperplane separates the data and maxi-
mizes the margin 1/‖w‖2. Vectors, xi for which
|yi|(wxT

i + b) � 1, will be termed the support vector.
%ere are cases in which we can linearly separate be-

tween the two classes, and there are other cases in which we
cannot linearly separate between the two classes. We can
overcome this problem by transforming the original input
space into some higher-dimensional feature space where the
two classes can be linearly separable. An alternative use for
the SVM is the kernel method, which enables us to model
higher-dimensional, nonlinear models [18]. In a nonlinear
problem, a kernel function could be used to add additional
dimensions to the raw data and thus making it a linear
problem in the resulting higher-dimensional space. On the
contrary, the kernel functions could help do certain cal-
culations faster which would need computations in the high-
dimensional space. %ere are many kernel functions, for
example, but not limited to, the linear kernel and the
Gaussian kernel, which are defined as shown in the following
equations:

Maximum spacing
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Support vector

Support vector

Figure 1: %e SVM hyperplane in the linear classification.
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K xi, xj􏼐 􏼑 � 1 + x
T
i xj􏼐 􏼑

p
, (4)

K xi, xj􏼐 􏼑 � exp −c xi − xj

�����

�����
2

􏼒 􏼓, (5)

where p is the order of polynomial and c is the predefined
parameter controlling the width of the Gaussian kernel. %e
SVM classification accuracy is improved by the proper
model parameters’ setting [19]. It is important to choose the
parameters in advance. %ese parameters are C, (c or p), and
kernel function.

C parameter is considered a regularization or general-
ization parameter. It governs the trade-off between having a
minimum training error and minimizing the weight’s norm.
C parameter tuning is a very important step in optimizing of
the SVM. %e parameter C imposes an upper bound on the
weight’s norm, which implies that there are multiple hy-
pothesis classes indexed by C. Increasing the C parameter
leads to increasing the complexity of the hypothesis class. If
we increase C slightly, we can still form all of the linear
models [19]. Determining how to set C is not very well
developed, so most researchers use cross-validation.

3. Scaling Techniques

Here, we introduce themathematical notations of ten scaling
techniques in addition to the normalization scaling tech-
niques with ranges [0, 1)] and [−1, 1]. First of all, we in-
troduce the following mathematical preliminaries, as shown
in Table 1.

%e scaled matrix is expressed as RAS, such that R �

diag(r1, . . . , rm) and S � diag(s1, . . . , sn). All scaling tech-
niques proposed in this section first apply row scaling and
after that column scaling. %en, the matrix after full scaling
(row and column) is given by the following:

A
R

� RA,

A
RS

� A
R
S.

(6)

3.1. Arithmetic Scaling Technique [11]. First, equation (7)
represents the rows’ scaling such that each row (instance) is
divided by the arithmetic mean of the absolute value of the
nonzero elements in that row (instance):

ri �
ni

􏽐j∈Ni
aij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
: aij ≠ 0. (7)

Second, equation (8) represents the columns’ scaling
such that each column (attribute) is divided by the arith-
metic mean of the absolute value of the nonzero elements in
that column (attribute):

sj �
mj

􏽐i∈Mj
a

R
ij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 a
R
ij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
≠ 0. (8)

3.2. deBuchet ScalingTechnique [4]. Equation (9) formulates
the de Buchet scaling method which is based on the relative
divergence:

Linear inseparability

Type 1

Type 2

Type 1

Type 2

Nonlinear mapping

Linear separability

(a) (b)

Classification hyperplane

Figure 2: Mapping from nonlinear to linear classification.
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min
r,s>0

􏽘

i,j∈Z

aijrisj + 1
aijrisj

􏼨 􏼩

p

⎛⎜⎜⎝ ⎞⎟⎟⎠

1/p

, (9)

where the number of the nonzero elements of A is dented by
Z and the parameter p is a positive integer. Here, there are
the following three cases:

Case p � 1: in this case, equation (9) approaches to the
following equation:

min
r,s>0

􏽘

i,j∈Z

aijrisj + 1
aijrisj

􏼨 􏼩. (10)

Equation (11) represents the row scaling factor of the
matrix A:

ri �
􏽐j∈Ni

1/ aij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

􏽐j∈Ni
aij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

1/2

. (11)

Equation (12) represents the column scaling factor of
the scaled matrix A by ri:

sj �
􏽐i∈Mj

1/ aR
ij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

􏽐i∈Mj
aR

ij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

1/2

. (12)

Case p � 2: in this case, equation (9) approaches to the
following equation:

min
r,s>0

􏽘

i,j ∈ Z

aijrisj + 1
aijrisj

􏼨 􏼩

2
⎛⎜⎜⎝ ⎞⎟⎟⎠

1/2

. (13)

Equation (14) represents the row scaling factor of the
matrix A:

ri �

􏽐j∈Ni
1/ aij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
2

􏼠 􏼡

􏽐j∈Ni
aij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
2

􏼠 􏼡

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

1/4

. (14)

Equation (15) represents the column scaling factor of
the scaled matrix A by ri:

sj �

􏽐i∈Mj
1/ aR

ij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
2

􏼠 􏼡

􏽐i∈Mj
aR

ij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
2

􏼠 􏼡

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

1/4

. (15)

Case p �∞: in this case, equation (9) approaches to the
following equation:

min
r,s>0

max
i,j∈Z

log aijrisj􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (16)

Equation (17) represents the row scaling factor of the
matrix A:

ri �
1

maxj∈Ni
aij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 minj∈Ni
aij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓􏼚 􏼛
1/2. (17)

Equation (18) represents the column scaling factor of the
scaled matrix A by ri:

sj �
1

maxi∈Mj
a

R
ij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 mini∈Mj
a

R
ij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓􏼚 􏼛
1/2. (18)

%e last case of the de Buchet (p �∞) scaling technique
is equivalent to the geometric mean scaling method that will
be introduced later.

3.3.EquilibrationScalingTechnique [11]. %e largest element
in the absolute value is the corner stone for this scaling
method. Each row of the matrix A is divided by the largest
element in the absolute value in that row.%en, each column
of the scaled matrix A by the row factor is divided by the
largest element in the absolute value in that column. %e
range of the final scaled matrix A is (−1, 1).

3.4. Geometric Mean Scaling Technique [11]. First, equation
(19) represents the rows’ scaling such that each row (in-
stance) is divided by the geometric mean of the absolute
value of the nonzero elements in that row (instance):

Table 1: Mathematical preliminaries for scaling techniques.

Symbol Description
A(aij): m × n matrix (with m rows (observations) and n columns (attributes))
r1: %e scaling agent of row i
sj: %e scaling agent of column j
R: Diagonal matrix, such that R � diag(r1, . . . , rm)

S: Diagonal matrix, such that S � diag(r1, . . . , rn)

Ni: Ni � j: Aij ≠ 0􏽮 􏽯, such that 1≤ i≤m and Mj � i: Aij ≠ 0􏽮 􏽯, such that 1≤ j≤ n

Mj: ni: %e number of elements for the set Ni

mj: %e number of elements for the set Mj

AR(aR
ij)

: %e scaled matrix by the row R scaling agent
ARS(aRS

ij ): %e final scaled matrix

4 Complexity



ri � max
j∈Ni

aij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌min
j∈Ni

aij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼠 􏼡

− 1/2

. (19)

Second, equation (20) represents the columns’ scaling
such that each column (attribute) is divided by the geometric
mean of the absolute value of the nonzero elements in that
column (attribute):

sj � max
j∈Mj

a
R
ij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌min
j∈Mj

a
R
ij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼠 􏼡

− 1/2

. (20)

3.5. IBM MPSX Scaling Technique [11]. %e IBM MPSX
scaling method is a combination between the geometric
mean and the equilibration scaling methods. First, the
geometric mean is performed four times or until the relation
(21) holds true:

1
|Z|

􏽐i,j∈Z aij􏼐 􏼑
2

− 􏽐i,j∈Z aij􏼐 􏼑
2

􏼒 􏼓
2

|Z|

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠< ε, (21)

where the number of the nonzero elements of A is denoted
by Z and the parameter εis a positive integer (which is often
ε< 10). %en, the equilibration scaling method is applied.
%e IBMMPSX scaling method was introduced by Benichou
et al. [20].

3.6. Lp-Norm Scaling Technique [11]. Equation (22) for-
mulates the Lp-norm scaling method:

min
r,s>0

􏽘

i,j∈Z

log aijrisj􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
p

􏼒 􏼓
1/p

, (22)

where the number of the nonzero elements of A is dented by
Z. Here, there are the following three cases:

Case p � 1: in this case, equation (22) approaches to the
following equation:

min
r,s>0

􏽘

i,j∈Z

log aijrisj􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (23)

Equation (24) represents the row scaling factor of the
matrix A:

ri �
1

median aij|j ∈ Ni􏽮 􏽯
. (24)

Similarly, equation (25) represents the column scaling
factor of the matrix A:

sj �
1

median a
R
ij|i ∈Mj􏽮 􏽯

. (25)

Case p � 2: in this case, equation (22) approaches to the
following equation:

min
r,s>0

􏽘

i,j∈Z

log aijrisj􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

􏼒 􏼓
1/2

. (26)

Equation (27) represents the row scaling factor of the
matrix A:

ri �
1

􏽑j∈Ni
aij􏼐 􏼑

1/ni
.

(27)

Similarly, equation (28) represents the column scaling
factor of the matrix A:

sj �
1

􏽑i∈Mj
a

R
ij􏼐 􏼑

1/mj
.

(28)

Case p �∞, the last case of the Lp-norm (p �∞)
scaling technique is equivalent to the geometric mean
scaling method.

3.7. Normalization Scaling Technique [−1, 1] [21].
Equation (29) is used for the normalization scaling method
with range [−1, 1] such that a, a′, maxk, andmink are the
original value, the scaled value, the maximum value, and the
minimum value of feature k, respectively:

a′ � 2
a − mink

maxk − mink

􏼠 􏼡 − 1. (29)

%e normalization scaling method avoids the numerical
difficulties during the calculation.

3.8. Normalization Scaling Technique [0, 1] [21]. Another
normalization scaling technique is formulated from the
updated equation (29) as follows:

a′ �
a − mink

maxk − mink

. (30)

4. Experimental Design

In this section, we introduce data description, measure for
performance evaluation, and the grid search method.

4.1. Data Description. In this work, we have run the pro-
posed model on the Wisconsin Diagnosis Breast Cancer
(WDBC) dataset that is available on the UCI Machine
Learning Repository [22]. %e dataset consists of 569 in-
stances divided into two classes. %e two classes malignant
and benign have 357 and 212 cases, respectively. Every
observation in the database has thirty-three attributes. %ese
thirty-three attributes differ between benign and malignant
samples.

%e MATLAB platform is used to implement the SVM
diagnostic system. On the contrary, we use LIBSVM that is
developed by Chang and Lin [23]. Table 2 describes the
computing environment.

Complexity 5



Salzberg [24] introduced the k-fold CV which is used to
guarantee the valid results. In this paper, set k as 10, i.e., the
data consists of 10 subsets. %e most commonly used (de-
fault) value is k� 10 in k-fold CV, which is often a good
choice [25]. Each time, one of the 10 subsets is utilized as the
test set and the remaining 9 subsets are utilized as a training
set.

4.2.Measure for Performance Evaluation. In order to test the
performance of the SVM model, we use accuracy (ACC).
Table 3 shows the confusion matrix. TP, FN, TN, and FP are
the number of true positives, the number of false negatives,
the number of true negatives, and the number of false
positives, respectively. According to the confusion matrix,
the total classification accuracy (ACC) is defined as follows:
ACC� (TP +TN)/(TP+ FP+TN+FN)× 100%.

4.3. Grid SearchMethod. In order to test the performance of
the SVM system, we use the grid search method. %e grid
search method is used to determine the optimal parameters
C and c. Figure 3 shows the flowchart of the SVM training
using the grid search.We utilize the searching space ofC and
c as follows: 2− 5, 2− 3, . . . , 215􏼈 􏼉 and 2− 15, 2− 13, . . . , 21􏼈 􏼉,
respectively.

5. Experimental Results and Discussion

Here, the experimental results were applied, and an attempt
is made to prove the validation of the proposed scaling
techniques. %e experiments were done on the WBCD
dataset using the SVM to estimate the efficiency of the
proposed scaling techniques for the breast cancer.

Table 4 shows the effectiveness of the grid search method
which gets the best parameters C and c for the SVM. %e
accuracy of normalization scaling techniques (S1) is better
than that without the scaling technique (S0). Also, using
scaling techniques (S1) speeds up the search and achieves
dramatic decrease of CPU time. So, this result shows the
effectiveness of the grid search method using the scaling
technique (S1).

Tables 5 and 6 show the average classification accuracy
rates and CPU time of the SVMwith four scaling techniques.
%ese techniques are normalization between (−1, 1) (S2), the
equilibration scaling (S3), the geometric mean scaling (S4),
and the arithmetic mean scaling (S5). One can notice easily
that S3 achieved the best accuracy with 98.95% out-
performing the compared scaling techniques. S3 also
achieved lowest CPU time with about 10.2 seconds.

Tables 7 and 8 show the average accuracy rates of the
SVMwith the de Buchet scaling technique with p � 1 (S6), de

Buchet scaling technique with p � 2 (S7), and the IBMMPSX
scaling technique (S8). It is clear that both S6 and S8 scaling
techniques have the same accuracy of 98.59% which is better
than the accuracy of S7 scaling technique.

Table 9 shows the average classification accuracy rates of
the SVM with the Lp-norm scaling technique with p � 1 (S9)
and Lp-norm scaling technique with p � 2 (S10). One can
notice that S9 achieved 98.25 accuracy outperforming S10
scaling technique. But, S10 CPU time is slightly lower than
S9.

Tables 10 and 11 summarize the accuracy and CPU time
of all compared scaling techniques. %e equilibration scaling
technique (S3) achieved the best accuracy and the lowest
CPU time outperforming all compared scaling techniques.
Figures 4 and 5 show the superiority of S3 according to the
accuracy rate and CPU time, respectively.

Figure 6 shows the superiority of equilibration scaling
technique (S3) and achieved best accuracy in all 10-fold
cross-validation.

6. Conclusions

In this work, we proposed ten efficient scaling techniques for
the Wisconsin Diagnosis Breast Cancer (WDBC) dataset
using the support vector machine (SVM). %ese scaling
techniques can enhance classification accuracy, reduce CPU
time, and make training faster. Also, grid search is used to
select best free parameters of the SVM (C, gamma). Sim-
ulation results showed that equilibration scaling technique
(S3) achieved best accuracy with 98.95% outperforming all
compared scaling techniques. S3 also achieved lowest CPU
time with about 10.2 seconds. Eight efficient scaling tech-
niques outperformed the two benchmark scaling techniques
according to the accuracy rate. %ese techniques are S3, S4,

Table 2: Description of the computing environment.

CPU Intel (R) core (TM) i5-7200U CPU@
2.70GHz

RAM size 4GB RAM
MATLAB
version R2018a (9.4.0.813654)

Table 3: confusion matrix for breast cancer diagnosis.

Predictive positive Predictive negative

Actual Positive (TP) (FN)
Negative (FP) (TN)

Testing set Training set Initial (c, Y)

Training SVM using k-fold CV

Avg. Accuracy Grid search

Stopping
criterion

No

Yes

Optimal (c, Y)

Figure 3: SVM using grid search.
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Table 4: Accuracy of theWBCD database using the SVM with C and c which were calculated by the grid search technique (without scaling,
normalization scaling [0, 1], and normalization scaling [−1, 1]).

Fold
Without scaling (S0) Normalization scaling (0, 1) (S1)

C c Accuracy % C c Accuracy %
1 2̂3 2̂−13 94.76 2̂13 2̂−7 100
2 2̂7 2̂−15 91.59 2̂15 2̂−9 98.25
3 2̂15 2̂−13 100 2̂15 2̂1 92.98
4 2̂5 2̂−13 97.18 2̂15 2̂−1 94.74
5 2̂1 2̂−11 96.23 2̂15 2̂−1 94.74
6 2̂−1 2̂−9 91.29 2̂15 2̂1 96.49
7 2̂11 2̂−15 97.59 2̂15 2̂−3 98.25
8 2̂9 2̂−15 98.60 2̂15 2̂−13 96.49
9 2̂9 2̂−15 97.59 2̂15 2̂1 94.74
10 2̂15 2̂−9 96.23 2̂15 2̂1 98.25
Avg. 6877.9 0.0005 96.10 30310.4 0.91 96.49
CPU time 52.62167 14.558410

Table 5: Accuracy of the WBCD database using the SVM with C and c which were calculated by the grid search technique (normalization
between [−1, 1] and equilibration scaling).

Fold
Normalization between (−1, 1) (S2) Equilibration scaling (S3)

C c Accuracy% C c Accuracy %
1 2̂11 2̂1 94.64 2̂5 2̂−1 100.00
2 2̂15 2̂1 92.98 2̂3 2̂1 98.25
3 2̂13 2̂1 100 2̂5 2̂−1 100.00
4 2̂13 2̂1 98.25 2̂15 2̂1 98.25
5 2̂15 2̂1 96.49 2̂1 2̂−1 100.00
6 2̂15 2̂−1 96.49 2̂9 2̂−1 98.25
7 2̂13 2̂1 100 2̂15 2̂1 100.00
8 2̂15 2̂1 96.49 2̂15 2̂1 100.00
9 2̂13 2̂1 94.74 2̂3 2̂1 94.74
10 2̂13 2̂−1 96.49 2̂3 2̂1 100.00
Avg. 17408 1.7 96.66 9890.6 1.4 98.95
CPU time 19.208797 10.175330

Table 6: Accuracy of the WBCD database using the SVM with C and c which were calculated by the grid search technique (de Buchet p � 1
scaling, de Buchet p � 2 scaling, and IBM MPSX scaling).

Fold
Geometric mean scaling (S4) Arithmetic mean scaling (S5)

C c Accuracy % C c Accuracy %
1 2̂11 2̂−9 100 2̂3 2̂−7 100.00
2 2̂11 2̂−9 98.25 2̂15 2̂−9 98.25
3 2̂11 2̂−9 100 2̂9 2̂−5 96.49
4 2̂15 2̂−13 98.25 2̂−1 2̂−5 96.49
5 2̂11 2̂−9 96.49 2̂9 2̂−9 100.00
6 2̂11 2̂−9 100 2̂5 2̂−5 98.25
7 2̂11 2̂−9 98.25 2̂7 2̂−7 98.25
8 2̂5 2̂−5 98.25 2̂−1 2̂−3 98.25
9 2̂11 2̂−9 100 2̂9 2̂−9 100.00
10 2̂11 2̂−9 96.49 2̂15 2̂−9 98.25
Avg. 4918.4 0.0047 98.60 6724.1 0.024 98.42
CPU time 15.143076 12.516496
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Table 7: Accuracy for theWBCD database using the SVMwith C and c which were calculated by the grid search technique (de Buchet p � 1
and p � 2).

Fold
de Buchet p � 1 (S6) de Buchet p � 2 (S7)

C c Accuracy % C c Accuracy %
1 2̂9 2̂−7 96.43 2̂15 2̂−11 94.46
2 2̂9 2̂−11 98.25 2̂5 2̂−5 96.49
3 2̂1 2̂−5 100 2̂5 2̂−5 100
4 2̂9 2̂−7 96.49 2̂9 2̂−7 100
5 2̂5 2̂−7 100 2̂3 2̂−3 100
6 2̂9 2̂−7 100 2̂3 2̂−1 96.49
7 2̂9 2̂−7 100 2̂5 2̂−5 98.25
8 2̂9 2̂−7 100 2̂5 2̂−5 100
9 2̂9 2̂−7 100 2̂5 2̂−1 100
10 2̂13 2̂−7 94.74 2̂5 2̂−5 100
Avg. 1181 0.0094 98.59 3348.8 0.129 98.57
CPU time 12.99264 13.28168

Table 8: Accuracy for the WBCD database using the SVM with C and c which were calculated by the grid search technique (IBM MPSX).

Fold
IBM MPSX (S8)

C c Accuracy%
1 2̂15 2̂−9 94.64
2 2̂5 2̂−1 100
3 2̂13 2̂−7 98.25
4 2̂9 2̂−5 98.25
5 2̂15 2̂−9 100
6 2̂15 2̂−9 100
7 2̂5 2̂1 100
8 2̂15 2̂−9 100
9 2̂15 2̂−9 100
10 2̂5 2̂1 94.74
Avg. 17264 0.0031 98.59
CPU time 11.516754

Table 9: Accuracy for the WBCD database using the SVM with C and c which were calculated by the grid search technique (Lp-norm p � 1
and p � 2).

Fold
Lp-norm p � 1 (S9) Lp-norm p � 2 (S10)

C c Accuracy % C c Accuracy %
1 2̂11 2̂−7 100 2̂13 2̂−5 98.21
2 2̂15 2̂−15 98.25 2̂15 2̂−7 94.74
3 2̂11 2̂−9 100 2̂13 2̂−5 96.49
4 2̂9 2̂−7 98.25 2̂13 2̂−5 92.98
5 2̂15 2̂−15 96.49 2̂13 2̂−5 96.49
6 2̂15 2̂−15 96.49 2̂13 2̂−5 100
7 2̂9 2̂−7 100 2̂9 2̂−5 96.49
8 2̂15 2̂−15 100 2̂11 2̂−5 100
9 2̂15 2̂−15 92.98 2̂13 2̂−5 98.25
10 2̂15 2̂−15 100 2̂13 2̂−5 96.49
Avg. 20172.8 0.0026 98.25 9267.2 0.029 97.01
CPU time 13.217008 12.847815
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S5, S6, S7, and S8. Seven of the ten efficient scaling tech-
niques outperformed two benchmark scaling techniques
according to the CPU time. %ese techniques are S3, S5, S6,
S7, and S8.

In the future work, the proposed scaling techniques will
be applied on other data sets with other classifiers in order to
prove the superiority of these techniques on the benchmark
normalization scaling technique that is used in MATLAB

SOFTWARE. We can improve this work by using the dif-
ferent metaheuristic algorithms with other mathematical
models [26–30]. Also, swarm intelligence techniques will be
used to optimize the SVM instead of grid search [31–33].
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Table 10: Accuracy for the WBCD database using the SVM for all
scaling techniques.

No. Symbol Scaling techniques Accuracy
1 (S3) Equilibration scaling 98.95
2 (S4) Geometric mean scaling 98.60
3 (S8) IBM MPSX 98.59
4 (S6) de Buchet p � 1 98.59
5 (S7) de Buchet p � 2 98.57
6 (S5) Arithmetic mean scaling 98.42
7 (S9) Lp-norm p � 1 98.25
8 (S10) Lp-norm p � 2 97.01
9 (S2) Normalization (−1, 1) 96.66
10 (S1) Normalization scaling (0,1) 96.49
11 (S0) Without scaling 96.10

Table 11: CPU time for the WBCD database using the SVM for all
scaling techniques.

No. Symbol Scaling techniques CPU time
1 (S3) Equilibration scaling 10.175330
2 (S8) IBM MPSX 11.516754
3 (S5) Arithmetic mean scaling 12.516496
4 (S10) Lp-norm p � 2 12.847815
5 (S6) de Buchet p � 1 12.99264
6 (S9) Lp-norm p � 1 13.217008
7 (S7) de Buchet p � 2 13.28168
8 (S1) Normalization scaling (0,1) 14.558410
9 (S4) Geometric mean scaling 15.143076
10 (S2) Normalization (−1, 1) 19.208797
11 (S0) Without scaling 52.62167

(S3) (S4) (S8) (S6) (S7) (S5) (S9) (S10) (S2) (S1) (S0)

Accuracy

Accuracy for WBCD database using SVM for all proposed scaling
techniques (S3–S10) against two scaling techniques (S1-S2) and

without scaling (S0)
100

99
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94

Figure 4: An accuracy comparison among all proposed scaling
techniques against the normalization [0, 1], normalization [−1, 1],
and without scaling technique S0.
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CPU Time for WBCD database using SVM for the proposed scaling
techniques (S3–S10) against two scaling techniques (S1–S2) and without 

scaling technique S0

Figure 5: CPU time comparison among all proposed scaling
techniques against the normalization [0, 1], normalization [−1, 1],
and without scaling technique S0.
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Figure 6: An accuracy comparison among the equilibration scaling
technique against the normalization [0, 1], normalization [−1, 1],
and without scaling technique S0 according to 10-fold.
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